
1



ÅSo why are we giving a course centered onclustered shading?

ÅThe reason is that isa technique with many good properties

Åand one that is gaining acceptance and support in the industry.

ÅThere are at least 2 shipped AAAtitles and more on the way

2



3



4



5



6



7



ÅThe algorithms we are going to talk about are relevant when we target hundreds 
or thousands of lights in real time, 

ÅAnd in a way you couldsay that the end goal is to make the number a non-issue. 
<click>

ÅThe lights we consider havea limited range, with some falloff which goes to 0 at 
the boundary.

ÅThis means that lights are notphysical, but this is (still) the normal procedure in 
games. <click>

ÅWe also do not consider shadows, which is covered later in the course.

ÅThere is no pre-computation so all geometry and lights are allowed to change 
freely from frame to frame.

8



ÅDespitethe name of all the techniques in this course, it is not actually about 
shading at all!

ÅThis is a name we have inherited from forward shading / deferred shading etc.

Å In reality the course is about working out which lights are relevant for shading each 
point of interest.

ÅWith millions of sample points (pixels) and thousands of lights 

ÅDoing this with high performance becomes sufficiently complex to be an 
interesting problem.

Å²Ŝ Ŏŀƭƭ ǘƘƛǎ ǇǊƻŎŜǎǎ ΨƭƛƎƘǘ ŀǎǎƛƎƴƳŜƴǘΩΣ ōǳǘ ƛǎ ŀƭǎƻ ƪƴƻǿƴ ŀǎ ΨƭƛƎƘǘ ŎǳƭƭƛƴƎΩΦ

9



10



ÅThe traditional method for real-time shading is called forward shading and used to 
be the only method during the first decade, or so, of consumer GPUs.

Å It is still dominant on mobile hardware.

ÅIn this technique, there is only a single pass over the geometry drawing into a frame 
buffer accumulating the final image.

ÅGeometry is rasterized, shading is performed and the frame buffer is updated.

ÅShading is performed in the fragment shaders. (Or indeed, in vertex shadersΧύ

11



ÅThus, we need to round up the set of relevant lights before each draw call.

Åand assign lights per chunk/batch of primitives.

ÅTo minimize number of lights, we want to make sure a batch is small, 
geometrically.

ÅBut to draw fast, keep the GPU busy and avoid API overhear, we want large 
batches.

Å!ƴŘ ŘƻƴΩǘ ŎŀǊŜ ǎƻ ƳǳŎƘ ŀōƻǳǘ ƎŜƻƳŜǘǊƛŎ ǎƘŀǇŜΦ

ÅThis is a fundamental conflict, where the best we can manage is a compromise. 
But it is a difficult one to strike.

12



ÅNow, this conflict runs deeper than simply batch size.

ÅThe basic problem is that we have to assign lights based on the size of geometry 
chunks.

ÅTherefore, on the one hand, we might have a situation with a few large objects, 
and many small lights

13


